初一数学试题
2025-06-25 0条评论
在学习的征途中,初一作为一个全新的起点,承载着学生们对知识的渴望与探索。初一数学,作为学科体系中的基础环节,不仅锻炼学生的逻辑思维能力,还为其后续学习打下坚实的基础。面对初一数学试题,学生们往往需要掌握一定的解题技巧与学习策略,才能游刃有余地应对各种题型。本文旨在通过深入剖析初一数学试题的特点,为广大学子提供一套行之有效的学习方法。
一、初一数学试题的特点解析
初一数学试题涵盖了有理数运算、代数式、方程与不等式、图形的初步认识等多个模块。这些试题不仅考察学生的基础计算能力,更侧重于逻辑思维与问题解决能力的培养。有理数运算作为基础,要求学生熟练掌握加、减、乘、除及混合运算的规则;代数式部分则引导学生理解变量的概念,学会用字母表示数并进行简单的代数运算;方程与不等式章节,则通过解决实际问题的方式,锻炼学生的数学建模能力;图形的初步认识,则激发学生对空间几何的兴趣,培养空间想象能力。
二、解题技巧与策略分享
面对初一数学试题,掌握有效的解题技巧至关重要。首先,强化基础训练,确保有理数运算准确无误,这是解决复杂问题的基础。其次,学会归纳总结,将同类题型进行分类整理,提炼出解题的共同规律,提高解题效率。例如,在解方程时,可遵循“去分母、去括号、移项、合并同类项、系数化为1”的步骤,形成固定的解题流程。同时,培养良好的审题习惯,仔细分析题意,明确已知条件与求解目标,避免因粗心大意导致的失分。此外,利用图形辅助解题也是一种有效的策略,特别是在几何问题中,通过画图可以帮助学生更好地理解题意,找到解题的突破口。
三、实战演练与心理调适
理论知识的学习最终需通过实践来检验。定期进行模拟测试,让学生置身于真实的考试环境中,不仅可以检验学习成果,还能提前适应考试节奏,减少紧张情绪。在模拟考试中,学生应学会合理分配时间,对于难题不恋战,确保基础题不丢分。同时,保持积极乐观的心态,面对难题时,不妨换个角度思考,或暂时跳过,待其他题目完成后回头再解,避免因一道题而影响全局。家长与教师也应给予学生足够的鼓励与支持他们建立自信心,克服畏难情绪。在学习过程中,适时给予正向反馈,让学生感受到进步的喜悦,从而激发学习动力。
四、持之以恒,稳步提升
学习是一个长期的过程,初一数学的学习也不例外。坚持每日复习,巩固所学,避免遗忘。遇到难题时,不妨与同学讨论或向老师请教,通过交流碰撞出思维的火花。同时,关注生活中的数学问题,将所学知识应用于实际,让学习变得更加生动有趣。记住,每一次的努力都不会白费,
初一上册数学试题
初一上册数学试题
一、选择题
1、-3的倒数是()
A.-3B.3C.D.
2、冬季某天我国三个城市的最高气温分别是-10°C,1°C,-7°C,把他们从高到低,排列正确的是()
A.-10°C,-7°C,1°C,B.-7°C,-10°C,1°C,
C.1°C,-7°C,-10°C,D.1°C,-10°C,-7°C
3.下列说法正确的是()
A.的系数是B.的.次数为2
C.32x2是4次单项式D.0是单项式
4、已知代数式的值是3,则代数式的值是()
A.1B.4C.7D.不能确定
5、两个有理数的积为负数,和也为负数,那么这两个数()
A.都是负数B.绝对值较大的数是正数,另一个是负数
C.互为相反数D.绝对值较大的数是负数,另一个是
6、已知和是同类项,则代数式的值是()
A.17B.37C.–17D.9
7.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()
A.a>bB.ab<0c.b-a>0D.a+b>0
二、填空题
9.-0.2的倒数是.
10.北京冬季里某一天的气温为-3℃~3℃,这一天北京的温差是℃.
11.国家统计局发布第六次全国人口普查主要数据公布报告显示:云南省常住人口约为45960000人,这个数据用科学记数法可表示为人.
12.比较-的大小,结果是:-
13、若|a+2|+=0,则a+b=.
14、某校去年初一招收新生x人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_
15、单项式的系数是
16“a,b两数的平方的差”用代数式表示为
17、一个单项式加上后等于,则这个单项式为
初一数学简便计算难题及答案 求一套,至少20道,答案与题分开 ,所有的题在上,然后就是所有的答案
初一数学试题 一、填空题(2分×15分=30分) 1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 。 2、计算:①100×103×104 = ;②-2a3b4÷12a3b2 = 。 3、(8xy2-6x2y)÷(-2x)= 4、(-3x-4y) ·( ) = 9x2-16y2。 5、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 。 6、如果x+y=6, xy=7, 那么x2+y2= 。 7、有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的从地球上消失,每年森林的消失量用科学记数法表示为__公顷。 8、 太阳的半径是6.96×104千米,它是精确到__位,有效数字有个。 9、 小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于7)=_。 10、图(1),当剪子口∠AOB增大15°时,∠COD增大 。 11、吸管吸易拉罐内的饮料时,如图(2),∠1=110°,则∠2= ° (易拉罐的上下底面互相平行) 图(1) 图(2) 图(3) 12、平行的大楼顶部各有一个射灯,当光柱相交时,如图(3),∠1+∠2+∠3=__° 二、选择题(3分×6分=18分)(仔细审题,小心陷井!) 13、若x 2+ax+9=(x +3)2,则a的值为 ( ) (A) 3 (B) ±3 (C) 6 (D)±6 14、如图,长方形的长为a,宽为b,横向阴影部分为长方形, 另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面 积是( ) (A) ab-bc+ac-c 2 (B) ab-bc-ac+c 2 (C) ab- ac -bc (D) ab-ac-bc-c 2 15、下列计算 ① (-1)0=-1 ②-x2.x3=x5③ 2×2-2= ④ (m3)3=m6 ⑤(-a2)m=(-am)2正确的有 ( ) (A) 1个 (B) 2个 (C) 3个 (D) 4个 图a 图b 16、 如图,下列判断中错误的是 ( ) (A) ∠A+∠ADC=180°—→AB‖CD (B) AB‖CD—→∠ABC+∠C=180° (C) ∠1=∠2—→AD‖BC (D) AD‖BC—→∠3=∠4 17、如图b,a‖b,∠1的度数是∠2的一半,则∠3等于 ( ) (A) 60° (B) 100° (C) 120 (D) 130° 18、一个游戏的中奖率是1%,小花买100张奖券,下列说法正确的是 ( ) (A)一定会中奖 (B)一定不中奖(C)中奖的可能性大(D)中奖的可能性小 三、解答题:(写出必要的演算过程及推理过程) (一)计算:(5分×3=15分) 19、123²-124×122(利用整式乘法公式进行计算) 20、 9(x+2)(x-2)-(3x-2)2 21、 0.125100×8100 22、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌。现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为 升,问:要用多少升杀虫剂?(6分) 24、一个角的补角比它的余角的二倍还多18度,这个角有多少度?(5分) 2007年七年级数学期中试卷 (本卷满分100分 ,完卷时间90分钟) 姓名: 成绩: 一、 填空(本大题共有15题,每题2分,满分30分) 1、如图:在数轴上与A点的距离等于5的数为 。 2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。 3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。 4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。 5、当a=-2时,代数式 的值等于 。 6、代数式2x3y2+3x2y-1是 次 项式。 7、如果4amb2与 abn是同类项,那么m+n= 。 8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。 9、如果∣x-2∣=1,那么∣x-1∣= 。 10、计算:(a-1)-(3a2-2a+1) = 。 11、用计算器计算(保留3个有效数字): = 。 12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。 2,6,7,8.算式 。 13、计算:(-2a)3 = 。 14、计算:(x2+ x-1)•(-2x)= 。 15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式) 二、选择(本大题共有4题,每题2分,满分8分) 16、下列说法正确的是…………………………( ) (A)2不是代数式 (B) 是单项式 (C) 的一次项系数是1 (D)1是单项式 17、下列合并同类项正确的是…………………( ) (A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab 18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( ) A、 B、 -1 C、 D、答案不对 19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式 |a + b| - 2xy的值为( ) A. 0 B.-2 C.-1 D.无法确定 三、解答题:(本大题共有4题,每题6分,满分24分) 20、计算:x+ +5 21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=- 22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分) (1) (2) ; 3)由(1)、(2)你有什么发现或想法? 23、已知:A=2x2-x+1,A-2B = x-1,求B 四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分) 24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a 求:(1)梯形ADGF的面积 (2)三角形AEF的面积 (3)三角形AFC的面积 25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形 拼成一个正方形,求图形中央的小正方形的面积,你不难找到 解法(1)小正方形的面积= 解法(2)小正方形的面积= 由解法(1)、(2),可以得到a、b、c的关系为: 26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费. (1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分) (2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。 求:(1)所有队员赠送的礼物总数。(用m的代数式表示) (2)当m=10时,赠送礼物的总数为多少件? 28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少? 2006年第一学期初一年级期中考试 数学试卷答案 一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3 7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6 11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1 二、16、D 17、B 18、B 19、D 三、20、原式= x+ +5 (1’) = x+ +5 (1’) = x+ +5 (1’) = x+4x-3y+5 (1’) = 5x-3y+5 (2’) 21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’) = x4-16-x4+4x2-4 (1’) = 4x2-20 (1’) 当x = 时,原式的值= 4×( )2-20 (1’) = 4× -20 (1’) =-19 (1’) 22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’) =3x2-6x-5 (1’) =3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可) =3×2-5 (1’) =1 (1’) 23、解: A-2B = x-1 2B = A-(x-1) (1’) 2B = 2x2-x+1-(x-1) (1’) 2B = 2x2-x+1-x+1 (1’) 2B = 2x2-2x+2 (1’) B = x2-x+1 (2’) 24、解:(1) (2’) (2) (2’) (3) + - - = (3’) 25、解:(1)C2 = C 2-2ab (3’) (2)(b-a)2或者b 2-2ab+a 2 (3’) (3)C 2= a 2+b 2 (1’) 26、解:(25)2 = a2 (1’) a = 32 (1’) 210 = 22b (1’) b = 5 (1’) 原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’) = a2- b2- a2- ab- b2 (1’) =- ab- b2 (1’) 当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’) 若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。 27、解(1):第一小队送给第二小队共(m+2)•m件 (2’) 第二小队送给第一小队共m•(m+2)件 (2’) 两队共赠送2m•(m+2)件 (2’) (2):当m = 2×102+4×10=240 件 (2’) 28、设:1997年商品价格为x元 (1’) 1998年商品价格为(1+5%)x元 (1’) 1999年商品价格为(1+5%)(1+10%)x元 (1’) 2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’) =0.0164=1.64% (2’) 答:2000年比1997年涨价1.64%。 (1’)
初一数学下册练习题 多一些~
一、选择题 (本大题共8小题,每小题3分,共24分)
1.下列运算中,正确的是 ……………………….………………………………. ( )
A、 B、 C、 D、
2.如果9-mx+x2是一个完全平方式,则m的值为………………………. ( )
A.3 B.6 C.±3 D.±6
3.为了了解我区七年级学生每天用于学习的时间,对其中300名学生进行了调查,则下列说法错误的是………………………. ………………………. ………………………. ( )
A.总体是我区七年级学生每天用于学习的时间的全体
B.其中300名学生每天用于学习的时间是总体的一个样本
C.样本容量是300 D.个体是其中1名学生每天用于学习的时间
7.若0.0000102=1.02×10n,则n等于 ………………………. ( )
A.-3 B.-4 C.-5 D.-6
二、填空题 (本大题共10小题,每小题2分,共20分)
9.下列四个计算:① ,② ,③ , ④ ,其中正确的有.(填序号)
初一的数学试题 带答案
初一数学同步习题
一、填空:
(1)若x<5,则|x-5|=,若|x+2|=1,则x=
(2)如果|a+2|+(b+1)2=0,那么(1/a)+b=_
(3)4080300保留三个有效数字的近似值数是_
(5)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定表示正数的是
(6)(-32)的底数是_,幂是_,结果是_
(9)一个三位数,十位数字是a,个位数字比十位数字的2倍小3,百位数字是十位数字的一半,用代数表示这个三位数是__
(10)若多项式(2mx2-x2+3x+1)-(5x2-4y2+3x)的值与x无关,则2m3-[3m2+(4m-5)+m]的值是_
二、选择题:
(1)已知x<0,且|x|=2,那么2x+|x|=()
A、2B、-2C、+2D、0
A、x>0,y>0B、x<0y<0C、x>0,y<0D、x<0,y>0
(3)如果一个有理数的平方根等于-x,那么x是()
A、负数B、正数C、非负数D、不是正数
(4)若m,n两数在数轴上表示的数如图,则按从小到大的顺序排列m,n,-m,-n,是()
A、n<m<-n<-mB、m<n<-m<-nC、n<-m<m<-nD、n<-n<m<-m
(5)如果|a-3|=3-a,则a的取值范围是()
A、a≥3B、a≤3C、a>3D、a<3
三、计算:
四、求值:
(4)若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值
(5)试证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值相等
五、
(1)化简求值:
-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=2, y=1/2
(2)当x=-2时ax3+bx-7的值是5,求当x =2 时,ax3+bx-17的值
(3)已知多项式2(x2+abx+3b)与2bx2-2abx+3a的和中,只有常数项-3,求a与b的关系
六、选作题:
(2)用简便方法指出下列各数的末位数字是几:
①2019②2135③2216④2315⑤2422⑥2527⑦2628
⑧2716⑨2818⑩2924
答案:
一、⑴5-x,-1或-3
⑶4.08×106
⑸a2+1⑹3 , 32, -9⑺五四1/3⑻3 , 5
⑽17
二、⑴B⑵B⑶D⑷C⑸B
三、⑴2⑵-5⑶-43⑷0
四、⑴0.1⑵b=3cm⑶3⑷11⑸略
五、⑴x2-xy-4y2值为1⑵值为-29⑶a与b互为相反数(a=1,b=-1)
六、⑴0.99
⑵①0②1③6④7⑤6⑥5⑦6⑧1⑨4⑩1
一元一次方程自测题(满分100分,时间90分)
一.
选择题:(每小题4分,共32分)
(1)下列各式中,不是等式的式子是( )
(A)3+2=6; (B) ; (C) ; (D)
(2)下列说法中,正确的是( )
(A)方程是等式; (B)等式是方程;
(C)含有字母的等式是方程; (D)不含字母的方程是等式。
(3)当 时,代数式 的值是4,那么a的值是( )
(A)-4; (B)-3; (C)3; (D)2。
(4)某商场上月的营业额是
万元,本月比上月增长15%,那么本月的营业额是( )
(A) 万元; (B) 万元;
(C) 万元; (D) 万元。
(5)如果 是方程
的解,那么 的值( )
(A) ; (B)5; (C) 1; (D)
(6)方程的解是( )
(A)x= ; (B);x= (C)x=
; (D)x=6
(7)学生 人,以每10人为一组,其中有两组各少1人,则学生共有( )
(A) 组; (B) 组; (C) 组; (D) 组
(8)下列各式中与 ( )的值相等的是( )
(A) ; (B) ; (C) ; (D)
二.填空题:(每空2分,共20分)
1) 对于方程4x=-2x-6,移项,得 ,合并同类项,得 ,系数化成1,得 。
2) 如果方程 。
3)当K=
时,代数式2K+(5+3K)的值为0。
4)如果2a2bm+1与 a2b2m-1是同类项,那么m= .
5)将下列分数化成分母是整数的形式:
; ; 。
6)如果甲数与数的2倍的和为20,乙数用X表示,那么甲数应表示成。
三.解方程题:(每小题6分,共30分)
(1)7X=5+4X(检验)(2)7X-(X-5)=4X-1
(3) (4)0.2X-0.1=2X
(5)
四.列方程解应用题:(每小题3分,共18分)
(1)有一个水池,如果单开甲管2小时注满水池,单开乙管5小时注满水池。甲、乙两管同时注水,问需要多少时间才能把水池注满?
(2)有一个水池,如果单开甲管2小时注满水池,单开乙管5小时注满水,单开丙管3小时可以把一满池水放完.如果三管同时开放,多少小时才能把一空池注满水?
(3)一个两位数,十位上的数比个位上的数小2.如果把十位上的数与个位上的数对调,那么得到的新数比原数的2倍小6.求原来的两位数.
初一数学第五章单元测试A
一、填空(每格2分) 班级______姓名______学号____
1、已知直线a与b相交,且∠1=70°,则∠2=__°,
∠3=__°,∠4=___°.
2、如图,∠A=50°,∠B=20°,∠C=30°,
则∠1=____°. (第1题)
3、已知,一个三角形的一个外角为70°,此三角形
为___三角形.
4、如果三角形中有两个角相等,其中一个角的外角为100°,
则这个三角形各内角为____________. (第2题)
5、直角三角形两锐角平分线相交所成的钝角为_____.
6、已知三角形的二边为2cm,5cm,周长为偶数,则第三边
为____cm.
7、如图,ΔABC中,AE为CB边上的高,AF为ΔABC (第7题)
的角平分线,∠B=80°,∠C=30°,则∠EAF=____°.
8、ΔABC中,∠ACB=RtΔ,CD⊥AB于D,则∠1=___,
∠2=____,图中互余的角有___对.若AC=2cm,
CB=3cm,则ΔABC的面积=_____cm2. (第8题)
9、如图,AB//CD,则∠1+∠2+∠3=____.
10、长、宽、高分别是4,5,6的长方体内一点P,到各个面
的距离和是___.
二、选择题(每题3分) (第9题)
1、下列长度的三条线段能组成三角形的是―――――――――――――( )
A.3cm,7cm,10cm B.5cm,4cm,8cm
C.5cm,9cm,3cm D.3cm,6cm,10cm
2、ΔABC中,若与∠C相邻的一个外角为110°,∠A=40°,则∠B为―――――(
)
A.30° B.50° C.60° D.70°
3、锐角三角形中,最大角的取值范围是―――――――――――――( )
A.0°<α<90° B.60°<α<180°
C.60°<α<90° D.60°≤α<90°
4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,
a=2,则符合这些条件的三角形有( )
A.1个 B.2个 C.3个 D.4个
5、已知,如图,∠2=62°,∠3=118°,则∠1与∠4 (第5题)
的大小关系是――――――――――――( )
A.∠1>∠4
B.∠1=∠4 C.∠1<∠4 D.不能确定
6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是( )
A.1 B.4 C.8 D12.
7、正方形水平放置直观图中画法正确的是――――――――――( )
A. B. C. D.
8、如图,已知AD是ΔABC的中线,BE是ΔABD的中线,
且ΔABC的面积为S,则ΔABE的面积为( )
A. S B. S C. S
D. S (第8题)
9、下列说法正确的是――――――――――( )
A.邻补角的平分线互相垂直
B.垂直于同一直线的两条直线互相平行
C.从直线外一点到这条直线的垂线段叫点到直线的距离
D.三角形的角平分线是一条射线.
三、解答题
1、如图,AB//CD,∠A=100°,∠C=75°,∠1∶∠2=5∶7,
求∠B的度数.(10分)
2、如图,DA⊥AC于A,BE//AD,交AC于B,∠D=∠E,则BD//CE,理由如下:
(每格2分)
∵ DA⊥AC( )
∴ DAC=90( )
∵ EB//AD( )
∴ ∠EBC=∠DAC=90°( )
∵ ∠D=∠E( )
∴ ∠C=____(等角的余角相等)
∴ BD//CE( )
3、(1)画一个长3cm,宽4cm,高的长方体的直观图.(7分)
(2)作ΔABC的三边上的高.(7分)
4、如图,长方体AB=3cm,BC=2cm,B1B=1cm,按规定尺寸画出沿长方体表面从点A到点C1的最短路线的示意图.
示意图:
初一数学第五章单元测试B
一、填空(每格2分) 班级______姓名______学号____
1、直角三角形两锐角平分线相交所成的锐角为_____.
2、长、宽、高分别是4,5,6的长方体内一点P,到各个面
的距离和是___.
3、已知,一个三角形的一个外角为70°,此三角形
为___三角形.
4、已知直线a与b相交,且∠1=70°,则∠2=__°,
∠3=__°,∠4=___°.
5、如图,∠A=50°,∠B=20°,∠C=30°,
则∠1=____°. (第5题)
6、如果三角形中有两个角相等,其中一个角的外角为100°,
则这个三角形各内角为____________.
7、已知三角形的二边为2cm,5cm,周长为偶数,则第三边
为____cm.
8、如图,ΔABC中,AE为CB边上的高,AF为ΔABC
(第8题)
的角平分线,∠B=80°,∠C=30°,则∠EAF=____°.
9、ΔABC中,∠ACB=RtΔ,CD⊥AB于D,则∠1=___,
∠2=____,图中互余的角有___对.若AC=2cm, (第9题)
CB=3cm,则ΔABC的面积=_____cm2.
10、如图,AB//CD,则∠1+∠2+∠3=____.
二、选择题(每题3分) (第10题)
1、下列长度的三条线段能组成三角形的是―――――――――――――( )
A.3cm,7cm,10cm B.5cm,9cm,3cm
C.5cm,4cm,8cm D.3cm,6cm,10cm
2、ΔABC中,若与∠C相邻的一个外角为110°,∠A=40°,则∠B为―――――(
)
A.70° B.50° C.60° D. 30°
3、锐角三角形中,最大角的取值范围是―――――――――――――( )
A.60°<α<90° B.60°<α<180°
C.0°<α<90° D.60°≤α<90°
4、若三角形的三边a、b、c、均为正整数,且a≥b≥c,
a=2,则符合这些条件的三角形有( )
A.4个 B.3个 C.2个 D.1个
5、已知,如图,∠2=62°,∠3=118°,则∠1与∠4 (第5题)
的大小关系是――――――――――――( )
A .∠1<∠4
B.∠1=∠4 C.∠1>∠4 D.不能确定
6、在长方体中,既与一个面平行,又与另一个面垂直的棱条数是( )
A.4 B.12 C.8 D.1
7、正方形水平放置直观图中画法正确的是――――――――――( )
A. B. C. D.
8、如图,已知AD是ΔABC的中线,BE是ΔABD的中线,
且ΔABC的面积为S,则ΔABE的面积为( )
A. S B. S C. S
D. S (第8题)
9、下列说法正确的是――――――――――( )
A.三角形的角平分线是一条射线.
B.垂直于同一直线的两条直线互相平行
C.从直线外一点到这条直线的垂线段叫点到直线的距离
D.邻补角的平分线互相垂直
三、解答题
1、如图,AB//CD,∠A=100°,∠C=75°,∠1∶∠2=5∶7,
求∠B的度数.(10分)
2、如图,DA⊥AC于A,BE//AD,交AC于B,∠D=∠E,则BD//CE,理由如下:
(每格2分)
∵ DA⊥AC( )
∴ ∠DAC=90°( )
∵ EB//AD( )
∴ ∠EBC=∠DAC=90°(
)
∵ ∠D=∠E( )
∴ ∠C=____(等角的余角相等)
∴ BD//CE( )
3、(1)画一个长3cm,宽4cm,高3cm的长方体的直观图.(7分)
(2)作ΔABC的三边上的高.(7分)
4、如图,长方体AB=3cm,BC=2cm,B1B=1cm,按规定尺寸画出沿长方体表面从点A到点C1的最短路线的示意图.
示意图:
第九章 章末综合检测题
(满分100分,时间90分钟)
一.
填空题(共22分,每空1分)
1. 在ABC中,AB=AC,B=74,则A=_.
2.
在ABC中,BC=AC,C=90,则A=,B=__.
3.
在ABC中,AB=AC,A=60,则B=,ABC是_三角形。
4.
在ABC中,如图1,BO平分ABC,CO平分ACB,BO=CO,如果BOC=140,那么A=_ .
A
A
O D
B C B C
图1 图2
5.
在ABC中,如图2,AB=AC,A=36,BD平分ABC,则图中共有个等腰三角形;他们分别是.
6.
如果两个图形是轴对称图形,那么沿某条直线对折,对折的两部分图形是__的,这条直线为__,这两个图形中的对应点叫做__.
7. 两对称图形的对应线段__;两对称图形的对应角.
8.
如果图形关于某一条直线对称,那么连结对称点的线段被对称轴__.
9.
有一个内角是130的等腰三角形的另外两个角分别是.
10.
等腰三角形一腰上的高与底边的夹角是37,则顶角为_.
11.
等腰三角形两腰上的高交成的锐角为80,则这个三角形个内角分别为.
12.
等边三角形两条中线相交成的锐角为__;对称轴共有条.
13.
在ABC中,AB=AC,A+B=2C,则ABC为三角形.
14.
等腰三角形的三个内角与顶角的一个外角之和等于260,则这个等腰三角形的顶角等于_;底角等于.
二. 判断题(共10分,每题2分)
15.轴对称图形的对称轴是唯一的。( )
16.梯形的对称轴是上底或下底的垂直平分线。( )
17.正方形的对角线是正方形的对称轴。( )
18.在ABC与ABC中,若A=A,则它们所对的边必有BC=BC。( )
19.等腰直角三角形是轴对称图形。( )
三. 选择题(共20分,每题4分)
20.下面的图形中,不是轴对称图形的是( )
A. 有两个角相等的三角形;
B. 有一个内角是40,另一个内角是100的三角形;
C. 三个内角的度数比是23:4的三角形;
D. 三个内角的度数比是1:1:2的三角形。
21.如图3,是轴对称图形的是( )
A. B.
B. D.
图3
22.如图4,左右两边构成轴对称图形的是( )
A. B.
B. D
图4
23.等腰三角形的一个外角是130,则它的底角等于( )
A.50 B.65 C.100 D.50或65
24.已知一个三角形的任何一个角的角平分线都垂直于这个角所对的边,这个三角形是( ) A.直角三角形; B.锐角三角形;
C.等腰直角三角形;
D.等边三角形。
四. 作图题(共30分)
25.作出下列图形的所有的对称轴,并标明每个图形对称轴的条数(每题2分)
(1) (2) (3)
(4) (5) (6)
26.分别以直线m为对称轴画出下列图形的对称图形,并保留作图痕迹。(每题4分)
(1)
m (2) m
B A B
A C E
C
D D
27.利用一条线段、一个圆、一个正三角形,设计一个轴对称图形。(4分)
28.如图5,A、B两村在一条小河的的同一侧,要在河边建一自来水厂向两村供水。
(1)
若要使自来水厂到两村的距离相等,厂址应选在哪个位置?
(2) 若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹。(6分)
.B
A.
图5
五. 解答题(共18分,每题6分)
29.如图6,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC。
求D的度数,ACD的度数。
A
B C
图6
D
30.如图7,在ABC中,ACB为直角,BD=BC,AE=AC,求DCE的度数。
A
D
E
C B
图7
31.如图8,四边形ABCD是长方形弹子球台面,有黑白两球分别在E、F两点位置上,试问,怎样撞击黑球E,才能使黑球E才能使它先碰撞台球台边AB反弹后再击中白球F?请画出路线图,并对作法加以解释说明。(6分)
A D
B C
图8
第九章 章末综合检测题参考答案
一. 填空题
1. 32 2. 45;45
3.
60 ;等边 4. 100
5. 3 ;ABC, BDC, DAB 6. 完全重合的;对称轴;对称点
7. 相等;相等 8. 垂直平分
9. 25;25 10. 74
11. 80;50;50 12. 60 ;3
13. 等边 14. 100 ; 40
二. 判断题
15. × 16.× 17.√ 18.× 19.√
三. 选择题
20.C 21.C 22.C 23.D 24.D
四. 作图题(画图略)
25.(1)2条; (2)1条; (3)1条; (4)2条; (5)4条; (6)3条。
26.(略)
27.(略)
28.(图略)作法如下:
(1)连结AB,作AB的垂直平分线交AB于点P,则P点为所求。
(2)作A点关于直线m的对称点A,连结AB交直线m于点Q,则Q点为所求。
五.解答题
29.
ABC=ACB=(180-92)/2=44,D=BCD,D=22;ACD=44+22=66
30.
ACE=AEC设为x,BCD=BDC设为y,要求的DCE设为z。
由ACB=90得:x+y-z=90;
由DCE内角和为180得:x+y+z=180。
两方程相减z可求。DCE=45
31.(图略)作法如下:
作E点(或F点)关于AB的对称点E(或F);连结EF(或EF);EF(或EF)与AB的交点P就是撞击点,对准这点打,必将击中白球。
附件:U600P42T4D98241F49DT20050117101718.doc 有用请
初一上学期数学期末试题
初一数学期末试卷
学年度第一学期期末考试初一数学试卷
时间:100分钟总分:150分第一卷(满分:100分)
一、填空题(每题2分,共30分)
1、4xyz是次单项式,系数
2、x2-2xy+y2是次多项式
3、3x2-x+的一次项系数是,常数项是
4、如果x+y=1,则x=(用y表示x)
5、若a表示正数,则-a表示(填正数、负数或零)
6、把ax4+ax+bx2按x的升幂排列得
7、合并同类项:5x3-6xy2-7x3+3xy2=
8、去括号:-(a+b)+(c-d)=
9、如果2x=5-5x,则2x+=5
10、当n=时,单项式5a2bn与3a2b4是同类项
11、要使等式=变成x=y,等式两边须同时乘以
12、用等号表示关系的式子叫做等式。
13、根据条件列方程:x的2倍加上5等于x的7倍减去2:
14、含盐15%的盐水a千克中,含盐克(用代数式表示)
15、甲、乙骑自行车同时从相距70千米的两地相向而行,已知甲每小早行驶20千米,乙每小时行驶15千米,则他们小时后相遇。
二、选择(有且只有一个正确答案,每题3分共30分)
16、下列各式中,不是代数式的是()
A、5aB、C、6D、x=3
17、多项式2x2y-3x3y2+4x2-81的次数是()
A、12B、4C、5D、3
18、下列各式中,是多项式的是()
A、2+3B、a=bC、a+bD、5x2
19、下列等式中,属于方程的是()
A、5-3=2B、4x+5=1C、4×4=16D、a+b=b+a
20、下列方程的解法正确的是()
A、解方程:=5B、解方程:2x-1=-x+5
解:=5=x=10解:2x-x=5-1
∴x=4
C、解方程:-y=1D、解方程:-=1
解:-y=1解:2x-3x+1=6
y=1-x=5
∴y=∴x=-5
22、关于x的方程x+a=4的解是3,则a的值为()
A、1B、-1C、2D、-2
23、下面的移项中,正确的是()
A、从5x=4x+5得5x+4x=5B、从x+6=13得x=13-6
C、从3x-1=2x得3x-2x=-1D、从5x+6=7x-1得5x+7x=6-1
24、a-2b-3c+d=a-(),括号内所填各项正确的是()
A、-2b+3c-dB、2b+3c-dC、2b-3c-dD、-2b-3c+d
25、代数式1-2(-x)的值等于2,则x的值等于()
A、-BC、-1D、1
三、解答题(每小题5分,共25分)
26、解方程5x-4=2x-1
27、合并同类项:5a-3x+4a+8x-5ax-2x
28、解方程:+1=3x
29、解方程:-=1
30、化简3a-[6a+(4a-5b)-10b]
四、(7分)
31、某工程,甲独立做10天完成,乙独立做15天完成,问两人合做需要多少天完成?
五、(8分)
32、化简求值
5a2+(-2a2)-8a3+6a2-a3其中a=-1
第二卷(满分50分)
六、填空(每题3分,共15分)
33、+2x2+bx-9=x3-6
34、若∣a+3∣+(b-1)2=0,则-b=
35、x=-1是方程x+1=-x+a的解,则1-a-a2=
36、代数式-a与-1的值相等,则a=
37、已知方程∣2x+3∣=1,则x=
七、(6分)
38、解方程[(y-3)-3]-3=0
八、(7分)
39、化简求值
6(x-y)n-2(x+y)3n-2(x-y)n+7(x+y)3n-(x+y)2m+5(x+y)3n-4(x-y)n,其中x=0.84,y=0.16
九、列方程解应用题(7分)
40、某车间女工占全车间人数的,又调来4名女工后,女工占全车间人数的,问原来车间共有多少人?
十(7分)
41、一个3位数,十位上的数是a,百位上的数是十位上数字的2倍,个位上数字比百位上数字小2
1)用代数式表示这个三位数
2)当a=4时,求这个三位数
十一、列方程解应用题(8分)
42、有一艘轮船在A、B两地间航行,顺流而下需3小时,逆流而上需5小时。已知水流的是每小时2千米,求A、B两地的距离。
版权声明
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
转载请注明来自,本文标题:初一数学试题
本文地址:https://www.shiputi.com/chaxun/13961.html
标签:
- 本站介绍
-
世普梯专注提供全国考试报名时间、最新考试政策解读及备考资料,涵盖公务员、教师资格、职业资格等考试资讯,同步分享职场工作总结模板与学习经验,助考生高效规划备考,一站式解决考试全周期需求。
- 搜索
-
-
- 最新文章
- 热门文章
- 随机阅读
- 随机tag
- 友情链接
-